• R/O
  • SSH

標籤
無標籤

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

File Info

修訂. 4068ce4bd17f61eef2dce0dfb7599b0a953ecff4
大小 6,157 bytes
時間 2012-10-04 02:52:08
作者 Lorenzo Isella
Log Message

How to include a figure generated with xfig (pdf+latex) in a latex doc.

Content

       
 	

%%% Local Variables:
%%% TeX-master: "deliverable.tex"
%%% End:
%\documentstyle[12pt,fullpage]{report}



\documentclass[12pt,a4paper,oneside]{report}
%\usepackage{fullpage,doublespace}
\usepackage{amssymb}
%% The amsthm package provides extended theorem environments
%% \usepackage{amsthm}   
% \usepackage{url}     
\usepackage{hyperref}
\usepackage{times}
\usepackage[T1]{fontenc}
%\usepackage[scaled]{uarial}


\usepackage[english]{babel}
\usepackage[latin1]{inputenc}
\usepackage{verbatim}
% \usepackage{epsfig}
\usepackage{amsmath}
\usepackage{amssymb}
\usepackage{amsthm}
%\usepackage{beamer}

\usepackage{fancyhdr}
   
\usepackage{titlesec}

\usepackage[pdftex]{graphicx,color}


 \newcommand{\medsize}[1]{\fontsize{16pt}{20pt}\selectfont #1}
 \newcommand{\medsizesec}[1]{\fontsize{14pt}{20pt}\selectfont #1}

\begin{document}

%\newcommand{\ol}{\overline}
\renewcommand{\i}{\int}
\newcommand{\n}{\nabla}
\newcommand{\x}{\vec x\; }
\renewcommand{\d}{\dag}
\newcommand{\h}{\hat}
\newcommand{\p}{\partial}
\renewcommand{\v}{\vert}
\renewcommand{\l}{\langle}
\renewcommand{\r}{\rangle}
\newcommand{\f}{\frac}
\newcommand{\s}{\sum}
\newcommand{\lm}[1]{\lim_{#1\to\infty}}
%\renewcommand{\in}{\infty}
\newcommand{\rro}{\right)}
\newcommand{\lro}{\left( }
\newcommand{\lsq}{\left[}
\newcommand{\rsq}{\right]}
\newcommand{\rcu}{\right\}}
\newcommand{\lcu}{\left\{}
\newcommand{\be}{\begin{equation}}
\newcommand{\ee}{\end{equation}}
\newcommand{\bi}{\begin{itemize}}
\newcommand{\ei}{\end{itemize}}
\newcommand{\ben}{\begin{enumerate}}
\newcommand{\een}{\end{enumerate}}
\newcommand{\esp}{ESPResSo }
\newcommand{\rmin}{r_{\textrm{min}}}
\newcommand{\rcut}{r_{\textrm{cut}}}
\newcommand{\umin}{u_{\textrm{min}}}
\newcommand{\usigma}{u_{\sigma}}
\newcommand{\umod}{u_{\textrm{mod}}}

\newcommand{\pra}{{\it Physical Review A}}
\newcommand{\prb}{{\it Physical Review B}}
\newcommand{\prl}{{\it Physical Review Letters}}

\newcommand{\jc}{{\it Journal of Colloid and Interface Science}}
\newcommand{\jas}{{\it Journal of Aerosol Science}}
%\newcommand{\pra}{{\it Physical Review A}}
%\newcommand{\prb}{{\it Physical Review B}}
%\newcommand{\pre}{{\it Physical Review E}}
%\newcommand{\prl}{{\it Physical Review Letters}}

%Fine preambolo

\newcommand{\unit}{\hat{\bf n}}
%  \newcommand{\pol}{\hat{\bf e}}
\newcommand{\rv}{{\bf r}}
\newcommand{\Ev}{{\bf E}}
\newcommand{\Bv}{{\bf B}}
\newcommand{\Ec}{{\cal E}}
\newcommand{\Rc}{{\cal R}}
\newcommand{\Pc}{{\cal P}}
\newcommand{\Pcv}{\bbox {\cal P}}
\newcommand{\dv}{{\bf d}}
\newcommand{\Dc}{{\cal D}}
\newcommand{\Dcv}{\bbox {\cal D}}
\newcommand{\Hc}{{\cal H}}
\newcommand{\kappav}{\bbox \kappa}
\newcommand{\Dkappav}{\Delta {\bbox\kappa}}
\newcommand{\qv}{{\bf q}}
\newcommand{\kv}{{\bf k}}
\newcommand{\eo}{\epsilon_0}
\newcommand{\ej}{\epsilon_j}
% \newcommand{\beq}{\begin{equation}}
% \newcommand{\eeq}{\end{equation}}
\newcommand{\bea}{\begin{eqnarray}}
\newcommand{\eea}{\end{eqnarray}}
\newcommand{\up}{\uparrow}
\newcommand{\down}{\downarrow}
\newcommand{\<}{\langle}
\renewcommand{\>}{\rangle}
\renewcommand{\(}{\left(}
\renewcommand{\)}{\right)}
\renewcommand{\[}{\left[}
\renewcommand{\]}{\right]}
\newcommand{\dagg}{d_{\rm{agg}}}
\newcommand{\vagg}{V_{\rm{agg}}}
\newcommand{\nagg}{n_{\rm{agg}}}
\newcommand{\df}{d_{f}}
\newcommand{\ragg}{\rho_{\rm{agg}}}
\newcommand{\reff}{\rho_{\rm{eff}}}
\newcommand{\re}{{\rm{Re}}}
\newcommand{\pr}{{\rm{Pr}}}
\newcommand{\sh}{{\rm{Sh}}}
\newcommand{\Kn}{{\rm{Kn}}}
\newcommand{\ra}{{\rm{Ra}}}
\renewcommand{\sc}{{\rm{Sc}}}
\newcommand{\nusselt}{{\rm{Nu}}}
\newcommand{\magg}{m_{\rm{agg}}}
\newcommand{\tres}{\tau_{\rm{res}}}
\newcommand{\gdif}{{\gamma_{\rm{dif}}}}
\newcommand{\vdep}{{v_{\rm{deb}}}}
\newcommand{\gth}{{\gamma_{\rm{th}}}}
\newcommand{\vth}{{v_{\rm{th}}}}

\newcommand{\kt}{{K_{\rm{T}}}}
\newcommand{\kair}{{k_{\rm{air}}}}
\newcommand{\vdif}{{v_{\rm{dif}}}}
\newcommand{\kp}{{k_{\rm{p}}}}
\newcommand{\commentout}[1]{{}}
%\newcommand{\half}{\hbox}
\newcommand{\half}{\hbox{$1\over2$}}
 \newcommand{\nv}{{\vec\nabla}}
%\renewcommand{\c}{\cdot}
\newcommand{\hv}{\harvarditem}

An attempt to calculate analytically the projected area of a monomer.
The projected area is calculated in the literature by considering an
aggregate in 3D, randomly oriented, and projecting it on a plane (chosen to be the $xy$ plane
here).
The area of the projection is evaluated and the procedure is repeated
for many random orientations and the averaged (on many orientations)
area is called projected area.





\begin{figure}[htbp]
\begin{center}
 
\input{test.pdf_t}  
       
\caption{Projection of a dimer in the $xy$ plane.}
\label{figure:example}
\end{center}
\end{figure}

In the case of a dimer, the projection always consists of two
partially overlapping circles.
The orientation of the two circles in the $xy$ plane is totally
irrelevant, the area being determined only by the distances $d$
between the centres of the two circles.
Here I claim that this distance depends only on the angle $\theta$
between the longitudinal symmetry axis of the dimer and the $z$ axis.
The distance $d$ is then given by
\be
d=2r|\sin(\theta)|,
\ee
where $r$ is the circle radius.

According to the link you can find   \href{http://bit.ly/T1t9ZU}{here}
the area of the overlap between the two circles is given by

\be
A_{\cap}=2r^{2}\arccos\(\f{d}{2r}\)-\f{1}{2}d\sqrt{4r^{2}-d^{2}}
\ee
which for $d=2r|\sin(\theta)|$ leads to

\be
A_{\cap}=2r^{2}\[ \arccos(|\sin(\theta)|) -|\sin(\theta)|\sqrt{1-|\sin(\theta)|^{2}}  \],
\ee
i.e.


\be
A_{\cap}=2r^{2}\[ \arccos(|\sin(\theta)|) -|\sin(\theta)\cos(\theta)|  \],
\ee


for a random orientation of the dimer, $\theta$ should be  $\theta \in
U[0, 2\pi] $ i.e. uniformly distributed between $0$ and $2\pi$.

At this point, numerically I find $\langle A_{\cap} \rangle\simeq
0.95r^{2}$, meaning that the projected area
$A_{pro}=2\pi r^{2}-A_{\cap}$ is about $5.33r^{2}$.
Unfortunately, with an entirely numerical procedure, I do not get this
value (I have not tested it thoroughly though).
Right now: are you convinced by the argument above?
I hope I understood what is meant by projected area.... 

\end{document}