修訂 | 4068ce4bd17f61eef2dce0dfb7599b0a953ecff4 (tree) |
---|---|
時間 | 2012-10-04 02:52:08 |
作者 | Lorenzo Isella <lorenzo.isella@gmai...> |
Commiter | Lorenzo Isella |
How to include a figure generated with xfig (pdf+latex) in a latex doc.
@@ -0,0 +1,218 @@ | ||
1 | + | |
2 | + | |
3 | + | |
4 | +%%% Local Variables: | |
5 | +%%% TeX-master: "deliverable.tex" | |
6 | +%%% End: | |
7 | +%\documentstyle[12pt,fullpage]{report} | |
8 | + | |
9 | + | |
10 | + | |
11 | +\documentclass[12pt,a4paper,oneside]{report} | |
12 | +%\usepackage{fullpage,doublespace} | |
13 | +\usepackage{amssymb} | |
14 | +%% The amsthm package provides extended theorem environments | |
15 | +%% \usepackage{amsthm} | |
16 | +% \usepackage{url} | |
17 | +\usepackage{hyperref} | |
18 | +\usepackage{times} | |
19 | +\usepackage[T1]{fontenc} | |
20 | +%\usepackage[scaled]{uarial} | |
21 | + | |
22 | + | |
23 | +\usepackage[english]{babel} | |
24 | +\usepackage[latin1]{inputenc} | |
25 | +\usepackage{verbatim} | |
26 | +% \usepackage{epsfig} | |
27 | +\usepackage{amsmath} | |
28 | +\usepackage{amssymb} | |
29 | +\usepackage{amsthm} | |
30 | +%\usepackage{beamer} | |
31 | + | |
32 | +\usepackage{fancyhdr} | |
33 | + | |
34 | +\usepackage{titlesec} | |
35 | + | |
36 | +\usepackage[pdftex]{graphicx,color} | |
37 | + | |
38 | + | |
39 | + \newcommand{\medsize}[1]{\fontsize{16pt}{20pt}\selectfont #1} | |
40 | + \newcommand{\medsizesec}[1]{\fontsize{14pt}{20pt}\selectfont #1} | |
41 | + | |
42 | +\begin{document} | |
43 | + | |
44 | +%\newcommand{\ol}{\overline} | |
45 | +\renewcommand{\i}{\int} | |
46 | +\newcommand{\n}{\nabla} | |
47 | +\newcommand{\x}{\vec x\; } | |
48 | +\renewcommand{\d}{\dag} | |
49 | +\newcommand{\h}{\hat} | |
50 | +\newcommand{\p}{\partial} | |
51 | +\renewcommand{\v}{\vert} | |
52 | +\renewcommand{\l}{\langle} | |
53 | +\renewcommand{\r}{\rangle} | |
54 | +\newcommand{\f}{\frac} | |
55 | +\newcommand{\s}{\sum} | |
56 | +\newcommand{\lm}[1]{\lim_{#1\to\infty}} | |
57 | +%\renewcommand{\in}{\infty} | |
58 | +\newcommand{\rro}{\right)} | |
59 | +\newcommand{\lro}{\left( } | |
60 | +\newcommand{\lsq}{\left[} | |
61 | +\newcommand{\rsq}{\right]} | |
62 | +\newcommand{\rcu}{\right\}} | |
63 | +\newcommand{\lcu}{\left\{} | |
64 | +\newcommand{\be}{\begin{equation}} | |
65 | +\newcommand{\ee}{\end{equation}} | |
66 | +\newcommand{\bi}{\begin{itemize}} | |
67 | +\newcommand{\ei}{\end{itemize}} | |
68 | +\newcommand{\ben}{\begin{enumerate}} | |
69 | +\newcommand{\een}{\end{enumerate}} | |
70 | +\newcommand{\esp}{ESPResSo } | |
71 | +\newcommand{\rmin}{r_{\textrm{min}}} | |
72 | +\newcommand{\rcut}{r_{\textrm{cut}}} | |
73 | +\newcommand{\umin}{u_{\textrm{min}}} | |
74 | +\newcommand{\usigma}{u_{\sigma}} | |
75 | +\newcommand{\umod}{u_{\textrm{mod}}} | |
76 | + | |
77 | +\newcommand{\pra}{{\it Physical Review A}} | |
78 | +\newcommand{\prb}{{\it Physical Review B}} | |
79 | +\newcommand{\prl}{{\it Physical Review Letters}} | |
80 | + | |
81 | +\newcommand{\jc}{{\it Journal of Colloid and Interface Science}} | |
82 | +\newcommand{\jas}{{\it Journal of Aerosol Science}} | |
83 | +%\newcommand{\pra}{{\it Physical Review A}} | |
84 | +%\newcommand{\prb}{{\it Physical Review B}} | |
85 | +%\newcommand{\pre}{{\it Physical Review E}} | |
86 | +%\newcommand{\prl}{{\it Physical Review Letters}} | |
87 | + | |
88 | +%Fine preambolo | |
89 | + | |
90 | +\newcommand{\unit}{\hat{\bf n}} | |
91 | +% \newcommand{\pol}{\hat{\bf e}} | |
92 | +\newcommand{\rv}{{\bf r}} | |
93 | +\newcommand{\Ev}{{\bf E}} | |
94 | +\newcommand{\Bv}{{\bf B}} | |
95 | +\newcommand{\Ec}{{\cal E}} | |
96 | +\newcommand{\Rc}{{\cal R}} | |
97 | +\newcommand{\Pc}{{\cal P}} | |
98 | +\newcommand{\Pcv}{\bbox {\cal P}} | |
99 | +\newcommand{\dv}{{\bf d}} | |
100 | +\newcommand{\Dc}{{\cal D}} | |
101 | +\newcommand{\Dcv}{\bbox {\cal D}} | |
102 | +\newcommand{\Hc}{{\cal H}} | |
103 | +\newcommand{\kappav}{\bbox \kappa} | |
104 | +\newcommand{\Dkappav}{\Delta {\bbox\kappa}} | |
105 | +\newcommand{\qv}{{\bf q}} | |
106 | +\newcommand{\kv}{{\bf k}} | |
107 | +\newcommand{\eo}{\epsilon_0} | |
108 | +\newcommand{\ej}{\epsilon_j} | |
109 | +% \newcommand{\beq}{\begin{equation}} | |
110 | +% \newcommand{\eeq}{\end{equation}} | |
111 | +\newcommand{\bea}{\begin{eqnarray}} | |
112 | +\newcommand{\eea}{\end{eqnarray}} | |
113 | +\newcommand{\up}{\uparrow} | |
114 | +\newcommand{\down}{\downarrow} | |
115 | +\newcommand{\<}{\langle} | |
116 | +\renewcommand{\>}{\rangle} | |
117 | +\renewcommand{\(}{\left(} | |
118 | +\renewcommand{\)}{\right)} | |
119 | +\renewcommand{\[}{\left[} | |
120 | +\renewcommand{\]}{\right]} | |
121 | +\newcommand{\dagg}{d_{\rm{agg}}} | |
122 | +\newcommand{\vagg}{V_{\rm{agg}}} | |
123 | +\newcommand{\nagg}{n_{\rm{agg}}} | |
124 | +\newcommand{\df}{d_{f}} | |
125 | +\newcommand{\ragg}{\rho_{\rm{agg}}} | |
126 | +\newcommand{\reff}{\rho_{\rm{eff}}} | |
127 | +\newcommand{\re}{{\rm{Re}}} | |
128 | +\newcommand{\pr}{{\rm{Pr}}} | |
129 | +\newcommand{\sh}{{\rm{Sh}}} | |
130 | +\newcommand{\Kn}{{\rm{Kn}}} | |
131 | +\newcommand{\ra}{{\rm{Ra}}} | |
132 | +\renewcommand{\sc}{{\rm{Sc}}} | |
133 | +\newcommand{\nusselt}{{\rm{Nu}}} | |
134 | +\newcommand{\magg}{m_{\rm{agg}}} | |
135 | +\newcommand{\tres}{\tau_{\rm{res}}} | |
136 | +\newcommand{\gdif}{{\gamma_{\rm{dif}}}} | |
137 | +\newcommand{\vdep}{{v_{\rm{deb}}}} | |
138 | +\newcommand{\gth}{{\gamma_{\rm{th}}}} | |
139 | +\newcommand{\vth}{{v_{\rm{th}}}} | |
140 | + | |
141 | +\newcommand{\kt}{{K_{\rm{T}}}} | |
142 | +\newcommand{\kair}{{k_{\rm{air}}}} | |
143 | +\newcommand{\vdif}{{v_{\rm{dif}}}} | |
144 | +\newcommand{\kp}{{k_{\rm{p}}}} | |
145 | +\newcommand{\commentout}[1]{{}} | |
146 | +%\newcommand{\half}{\hbox} | |
147 | +\newcommand{\half}{\hbox{$1\over2$}} | |
148 | + \newcommand{\nv}{{\vec\nabla}} | |
149 | +%\renewcommand{\c}{\cdot} | |
150 | +\newcommand{\hv}{\harvarditem} | |
151 | + | |
152 | +An attempt to calculate analytically the projected area of a monomer. | |
153 | +The projected area is calculated in the literature by considering an | |
154 | +aggregate in 3D, randomly oriented, and projecting it on a plane (chosen to be the $xy$ plane | |
155 | +here). | |
156 | +The area of the projection is evaluated and the procedure is repeated | |
157 | +for many random orientations and the averaged (on many orientations) | |
158 | +area is called projected area. | |
159 | + | |
160 | + | |
161 | + | |
162 | + | |
163 | + | |
164 | +\begin{figure}[htbp] | |
165 | +\begin{center} | |
166 | + | |
167 | +\input{test.pdf_t} | |
168 | + | |
169 | +\caption{Projection of a dimer in the $xy$ plane.} | |
170 | +\label{figure:example} | |
171 | +\end{center} | |
172 | +\end{figure} | |
173 | + | |
174 | +In the case of a dimer, the projection always consists of two | |
175 | +partially overlapping circles. | |
176 | +The orientation of the two circles in the $xy$ plane is totally | |
177 | +irrelevant, the area being determined only by the distances $d$ | |
178 | +between the centres of the two circles. | |
179 | +Here I claim that this distance depends only on the angle $\theta$ | |
180 | +between the longitudinal symmetry axis of the dimer and the $z$ axis. | |
181 | +The distance $d$ is then given by | |
182 | +\be | |
183 | +d=2r|\sin(\theta)|, | |
184 | +\ee | |
185 | +where $r$ is the circle radius. | |
186 | + | |
187 | +According to the link you can find \href{http://bit.ly/T1t9ZU}{here} | |
188 | +the area of the overlap between the two circles is given by | |
189 | + | |
190 | +\be | |
191 | +A_{\cap}=2r^{2}\arccos\(\f{d}{2r}\)-\f{1}{2}d\sqrt{4r^{2}-d^{2}} | |
192 | +\ee | |
193 | +which for $d=2r|\sin(\theta)|$ leads to | |
194 | + | |
195 | +\be | |
196 | +A_{\cap}=2r^{2}\[ \arccos(|\sin(\theta)|) -|\sin(\theta)|\sqrt{1-|\sin(\theta)|^{2}} \], | |
197 | +\ee | |
198 | +i.e. | |
199 | + | |
200 | + | |
201 | +\be | |
202 | +A_{\cap}=2r^{2}\[ \arccos(|\sin(\theta)|) -|\sin(\theta)\cos(\theta)| \], | |
203 | +\ee | |
204 | + | |
205 | + | |
206 | +for a random orientation of the dimer, $\theta$ should be $\theta \in | |
207 | +U[0, 2\pi] $ i.e. uniformly distributed between $0$ and $2\pi$. | |
208 | + | |
209 | +At this point, numerically I find $\langle A_{\cap} \rangle\simeq | |
210 | +0.95r^{2}$, meaning that the projected area | |
211 | +$A_{pro}=2\pi r^{2}-A_{\cap}$ is about $5.33r^{2}$. | |
212 | +Unfortunately, with an entirely numerical procedure, I do not get this | |
213 | +value (I have not tested it thoroughly though). | |
214 | +Right now: are you convinced by the argument above? | |
215 | +I hope I understood what is meant by projected area.... | |
216 | + | |
217 | +\end{document} | |
218 | + |