• R/O
  • SSH

提交

標籤
無標籤

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

修訂4068ce4bd17f61eef2dce0dfb7599b0a953ecff4 (tree)
時間2012-10-04 02:52:08
作者Lorenzo Isella <lorenzo.isella@gmai...>
CommiterLorenzo Isella

Log Message

How to include a figure generated with xfig (pdf+latex) in a latex doc.

Change Summary

差異

diff -r 4b7bd492453e -r 4068ce4bd17f latex-documents/xfig-figure.tex
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/latex-documents/xfig-figure.tex Wed Oct 03 19:52:08 2012 +0200
@@ -0,0 +1,218 @@
1+
2+
3+
4+%%% Local Variables:
5+%%% TeX-master: "deliverable.tex"
6+%%% End:
7+%\documentstyle[12pt,fullpage]{report}
8+
9+
10+
11+\documentclass[12pt,a4paper,oneside]{report}
12+%\usepackage{fullpage,doublespace}
13+\usepackage{amssymb}
14+%% The amsthm package provides extended theorem environments
15+%% \usepackage{amsthm}
16+% \usepackage{url}
17+\usepackage{hyperref}
18+\usepackage{times}
19+\usepackage[T1]{fontenc}
20+%\usepackage[scaled]{uarial}
21+
22+
23+\usepackage[english]{babel}
24+\usepackage[latin1]{inputenc}
25+\usepackage{verbatim}
26+% \usepackage{epsfig}
27+\usepackage{amsmath}
28+\usepackage{amssymb}
29+\usepackage{amsthm}
30+%\usepackage{beamer}
31+
32+\usepackage{fancyhdr}
33+
34+\usepackage{titlesec}
35+
36+\usepackage[pdftex]{graphicx,color}
37+
38+
39+ \newcommand{\medsize}[1]{\fontsize{16pt}{20pt}\selectfont #1}
40+ \newcommand{\medsizesec}[1]{\fontsize{14pt}{20pt}\selectfont #1}
41+
42+\begin{document}
43+
44+%\newcommand{\ol}{\overline}
45+\renewcommand{\i}{\int}
46+\newcommand{\n}{\nabla}
47+\newcommand{\x}{\vec x\; }
48+\renewcommand{\d}{\dag}
49+\newcommand{\h}{\hat}
50+\newcommand{\p}{\partial}
51+\renewcommand{\v}{\vert}
52+\renewcommand{\l}{\langle}
53+\renewcommand{\r}{\rangle}
54+\newcommand{\f}{\frac}
55+\newcommand{\s}{\sum}
56+\newcommand{\lm}[1]{\lim_{#1\to\infty}}
57+%\renewcommand{\in}{\infty}
58+\newcommand{\rro}{\right)}
59+\newcommand{\lro}{\left( }
60+\newcommand{\lsq}{\left[}
61+\newcommand{\rsq}{\right]}
62+\newcommand{\rcu}{\right\}}
63+\newcommand{\lcu}{\left\{}
64+\newcommand{\be}{\begin{equation}}
65+\newcommand{\ee}{\end{equation}}
66+\newcommand{\bi}{\begin{itemize}}
67+\newcommand{\ei}{\end{itemize}}
68+\newcommand{\ben}{\begin{enumerate}}
69+\newcommand{\een}{\end{enumerate}}
70+\newcommand{\esp}{ESPResSo }
71+\newcommand{\rmin}{r_{\textrm{min}}}
72+\newcommand{\rcut}{r_{\textrm{cut}}}
73+\newcommand{\umin}{u_{\textrm{min}}}
74+\newcommand{\usigma}{u_{\sigma}}
75+\newcommand{\umod}{u_{\textrm{mod}}}
76+
77+\newcommand{\pra}{{\it Physical Review A}}
78+\newcommand{\prb}{{\it Physical Review B}}
79+\newcommand{\prl}{{\it Physical Review Letters}}
80+
81+\newcommand{\jc}{{\it Journal of Colloid and Interface Science}}
82+\newcommand{\jas}{{\it Journal of Aerosol Science}}
83+%\newcommand{\pra}{{\it Physical Review A}}
84+%\newcommand{\prb}{{\it Physical Review B}}
85+%\newcommand{\pre}{{\it Physical Review E}}
86+%\newcommand{\prl}{{\it Physical Review Letters}}
87+
88+%Fine preambolo
89+
90+\newcommand{\unit}{\hat{\bf n}}
91+% \newcommand{\pol}{\hat{\bf e}}
92+\newcommand{\rv}{{\bf r}}
93+\newcommand{\Ev}{{\bf E}}
94+\newcommand{\Bv}{{\bf B}}
95+\newcommand{\Ec}{{\cal E}}
96+\newcommand{\Rc}{{\cal R}}
97+\newcommand{\Pc}{{\cal P}}
98+\newcommand{\Pcv}{\bbox {\cal P}}
99+\newcommand{\dv}{{\bf d}}
100+\newcommand{\Dc}{{\cal D}}
101+\newcommand{\Dcv}{\bbox {\cal D}}
102+\newcommand{\Hc}{{\cal H}}
103+\newcommand{\kappav}{\bbox \kappa}
104+\newcommand{\Dkappav}{\Delta {\bbox\kappa}}
105+\newcommand{\qv}{{\bf q}}
106+\newcommand{\kv}{{\bf k}}
107+\newcommand{\eo}{\epsilon_0}
108+\newcommand{\ej}{\epsilon_j}
109+% \newcommand{\beq}{\begin{equation}}
110+% \newcommand{\eeq}{\end{equation}}
111+\newcommand{\bea}{\begin{eqnarray}}
112+\newcommand{\eea}{\end{eqnarray}}
113+\newcommand{\up}{\uparrow}
114+\newcommand{\down}{\downarrow}
115+\newcommand{\<}{\langle}
116+\renewcommand{\>}{\rangle}
117+\renewcommand{\(}{\left(}
118+\renewcommand{\)}{\right)}
119+\renewcommand{\[}{\left[}
120+\renewcommand{\]}{\right]}
121+\newcommand{\dagg}{d_{\rm{agg}}}
122+\newcommand{\vagg}{V_{\rm{agg}}}
123+\newcommand{\nagg}{n_{\rm{agg}}}
124+\newcommand{\df}{d_{f}}
125+\newcommand{\ragg}{\rho_{\rm{agg}}}
126+\newcommand{\reff}{\rho_{\rm{eff}}}
127+\newcommand{\re}{{\rm{Re}}}
128+\newcommand{\pr}{{\rm{Pr}}}
129+\newcommand{\sh}{{\rm{Sh}}}
130+\newcommand{\Kn}{{\rm{Kn}}}
131+\newcommand{\ra}{{\rm{Ra}}}
132+\renewcommand{\sc}{{\rm{Sc}}}
133+\newcommand{\nusselt}{{\rm{Nu}}}
134+\newcommand{\magg}{m_{\rm{agg}}}
135+\newcommand{\tres}{\tau_{\rm{res}}}
136+\newcommand{\gdif}{{\gamma_{\rm{dif}}}}
137+\newcommand{\vdep}{{v_{\rm{deb}}}}
138+\newcommand{\gth}{{\gamma_{\rm{th}}}}
139+\newcommand{\vth}{{v_{\rm{th}}}}
140+
141+\newcommand{\kt}{{K_{\rm{T}}}}
142+\newcommand{\kair}{{k_{\rm{air}}}}
143+\newcommand{\vdif}{{v_{\rm{dif}}}}
144+\newcommand{\kp}{{k_{\rm{p}}}}
145+\newcommand{\commentout}[1]{{}}
146+%\newcommand{\half}{\hbox}
147+\newcommand{\half}{\hbox{$1\over2$}}
148+ \newcommand{\nv}{{\vec\nabla}}
149+%\renewcommand{\c}{\cdot}
150+\newcommand{\hv}{\harvarditem}
151+
152+An attempt to calculate analytically the projected area of a monomer.
153+The projected area is calculated in the literature by considering an
154+aggregate in 3D, randomly oriented, and projecting it on a plane (chosen to be the $xy$ plane
155+here).
156+The area of the projection is evaluated and the procedure is repeated
157+for many random orientations and the averaged (on many orientations)
158+area is called projected area.
159+
160+
161+
162+
163+
164+\begin{figure}[htbp]
165+\begin{center}
166+
167+\input{test.pdf_t}
168+
169+\caption{Projection of a dimer in the $xy$ plane.}
170+\label{figure:example}
171+\end{center}
172+\end{figure}
173+
174+In the case of a dimer, the projection always consists of two
175+partially overlapping circles.
176+The orientation of the two circles in the $xy$ plane is totally
177+irrelevant, the area being determined only by the distances $d$
178+between the centres of the two circles.
179+Here I claim that this distance depends only on the angle $\theta$
180+between the longitudinal symmetry axis of the dimer and the $z$ axis.
181+The distance $d$ is then given by
182+\be
183+d=2r|\sin(\theta)|,
184+\ee
185+where $r$ is the circle radius.
186+
187+According to the link you can find \href{http://bit.ly/T1t9ZU}{here}
188+the area of the overlap between the two circles is given by
189+
190+\be
191+A_{\cap}=2r^{2}\arccos\(\f{d}{2r}\)-\f{1}{2}d\sqrt{4r^{2}-d^{2}}
192+\ee
193+which for $d=2r|\sin(\theta)|$ leads to
194+
195+\be
196+A_{\cap}=2r^{2}\[ \arccos(|\sin(\theta)|) -|\sin(\theta)|\sqrt{1-|\sin(\theta)|^{2}} \],
197+\ee
198+i.e.
199+
200+
201+\be
202+A_{\cap}=2r^{2}\[ \arccos(|\sin(\theta)|) -|\sin(\theta)\cos(\theta)| \],
203+\ee
204+
205+
206+for a random orientation of the dimer, $\theta$ should be $\theta \in
207+U[0, 2\pi] $ i.e. uniformly distributed between $0$ and $2\pi$.
208+
209+At this point, numerically I find $\langle A_{\cap} \rangle\simeq
210+0.95r^{2}$, meaning that the projected area
211+$A_{pro}=2\pi r^{2}-A_{\cap}$ is about $5.33r^{2}$.
212+Unfortunately, with an entirely numerical procedure, I do not get this
213+value (I have not tested it thoroughly though).
214+Right now: are you convinced by the argument above?
215+I hope I understood what is meant by projected area....
216+
217+\end{document}
218+