• R/O
  • SSH

提交

標籤
無標籤

Frequently used words (click to add to your profile)

javac++androidlinuxc#windowsobjective-ccocoa誰得qtpythonphprubygameguibathyscaphec計画中(planning stage)翻訳omegatframeworktwitterdomtestvb.netdirectxゲームエンジンbtronarduinopreviewer

Commit MetaInfo

修訂8700cfef6c536d9547f22acdb240dfa902c7bc9f (tree)
時間2020-02-06 22:37:10
作者Lorenzo Isella <lorenzo.isella@gmai...>
CommiterLorenzo Isella

Log Message

A tex file showing how to use the bibtex file for bibliography and how to put the bibliography at the end and ensure that any picture is placed in its section.

Change Summary

差異

diff -r c5059bd950f5 -r 8700cfef6c53 latex-documents/report_composite_indicator.tex
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/latex-documents/report_composite_indicator.tex Thu Feb 06 14:37:10 2020 +0100
@@ -0,0 +1,367 @@
1+ \documentclass[12pt,a4paper]{article}
2+% \documentclass[14pt, a4paper]{extarticle}
3+\usepackage[utf8x]{inputenc}
4+\usepackage[english]{babel}
5+\usepackage{graphicx}
6+\usepackage{amsmath}
7+\usepackage{xcolor}
8+\usepackage{caption}
9+\usepackage{url}
10+\usepackage{esvect}
11+% for placeholder text
12+\usepackage{lipsum}
13+ % \usepackage[margin=0.5in]{geometry}
14+\usepackage{mathtools}% Loads amsmath
15+ \usepackage[section]{placeins}
16+ \usepackage{tabularx}
17+\usepackage{colortbl, xcolor}
18+\usepackage{booktabs}
19+\usepackage{doi}
20+
21+% \usepackage[backend=bibtex,style=verbose-trad2]{biblatex}
22+% \bibliography{mybibfile}
23+
24+
25+\title{Annex I: Methodology for Composite Indicator on Non-Tariff Measures}
26+% \author{Lorenzo Isella}
27+\date{}
28+
29+\begin{document}
30+\maketitle
31+
32+\abstract{
33+We detail the methodology and the calculations behind the construction
34+of a composite indicator for the non-tariff measures based on the
35+UNCTAD data available at
36+\url{https://trains.unctad.org/Forms/Analysis.aspx}. We follow the
37+methodology in \cite{nicoletti} and \cite{oecd-composite}.
38+}
39+\section{Data Overview}
40+The discussion of the economic meaning of the various non-tariff
41+measures (NTMs) is beyond the scope of this document, as is the data
42+processing of the UNCTAD database.
43+The starting point is given by the already cleaned, aggregated and restructured NTM
44+dataset (a raw dowload of the database will not directly provide the
45+same input data as the one used for this manuscript).
46+For all the $85$ reporters listed in the database we calculated the
47+total number of NTMs they impose on third-country imports broken down
48+by ntm 1-digit code.
49+
50+The UNCTAD database contains information about the following
51+NTM 1-digit codes
52+\begin{itemize}
53+\item A SANITARY AND PHYTOSANITARY MEASURES
54+\item B TECHNICAL BARRIERS TO TRADE
55+\item C PRE-SHIPMENT INSPECTION AND OTHER
56+FORMALITIES
57+\item D CONTINGENT TRADE-PROTECTIVE MEASURES
58+\item E NON-AUTOMATIC LICENSING, QUOTAS,
59+PROHIBITIONS AND QUANTITY-CONTROL
60+MEASURES OTHER THAN FOR SPS OR TBT
61+REASONS
62+\item F PRICE-CONTROL MEASURES, INCLUDING
63+ADDITIONAL TAXES AND CHARGES
64+\item G FINANCE MEASURES
65+\item H MEASURES AFFECTING COMPETITION
66+\item I TRADE-RELATED INVESTMENT MEASURES
67+\item J DISTRIBUTION RESTRICTIONS
68+\item K RESTRICTIONS ON POST-SALES SERVICES
69+ \item {L SUBSIDIES (EXCLUDING EXPORT SUBSIDIES UNDER P7)}
70+\item M GOVERNMENT PROCUREMENT RESTRICTIONS
71+\item N INTELLECTUAL PROPERTY
72+\item O RULES OF ORIGIN
73+\item {P EXPORT-RELATED MEASURES}
74+\end{itemize}
75+
76+We leave out of the analysis P and L, since they are measures taken by
77+the exporting rather than the importing country (in other words, they
78+affect the imports, but they are not the consequence of some policy of
79+the importing country).
80+\section{Correlation Analysis}
81+We calculate the total number of NTMs, broken by
82+1-digit codes, that each reporter (a set of 85 countries or country aggregates
83+including the EU28) adopts (sum of its NTMs on all the imports
84+from any third country).
85+
86+We then look at the structure of the correlations which are illustrated
87+in Figure \ref{cor-mat}. A screening of the correlation matrix reveals
88+several interesting properties
89+\begin{enumerate}
90+\item All the statistically significant correlations are positive.
91+\item Subindicators H and I are not significantly correlated to any other
92+ subindicator. We therefore choose to leave them out of the analysis.
93+ % \textcolor{red}{Is this a sound decision (statistically
94+ % speaking)? Economically speaking it may make sense since I
95+ % includes also measures affecting the producer and not only the
96+ % importer and the same applies to H.}
97+\item There is an extremely high correlation between subindicators N and
98+ O. This is a spurious correlation due to both O and N consisting
99+ primarily of zero values. As a consequence, they are also left out.
100+\end{enumerate}
101+
102+% \textcolor{red}{Discarding subindicators H, I, N and O is also the direct result of
103+% eliminating all the subindicators for which the non-zero values are less
104+% than $10\%$ than the total number of data.} If we believe in the
105+% integrity of the database (which does not explicitly mention missing
106+% data), the absence of information about a e.g. rules of origins
107+% (subindicator O)
108+% measures imposed by country A from country B should mean that the
109+% number of measures related to the rules of origins is zero and not
110+% missing. Several conversation with UNCTAD however leave ample space to doubt.
111+
112+
113+% % \end{itemize}
114+
115+% We also notice the extremely high correlation between N and O.
116+% We do not have an explanation for that, since rules of origin and
117+% intellectual property are definitely two distinct categories of
118+% measures, but the level of correlation is such that we choose to
119+% discard indicator N.
120+% \begin{itemize}
121+% \item \textcolor{red}{Once again, any comments on this?}
122+% \end{itemize}
123+
124+\begin{figure}
125+\includegraphics[width=\columnwidth]{correlation_subindicators.pdf}
126+\caption{Correlation matrix. Crossed values are not statistically
127+ significant at the $p=0.05$ level.}
128+\label{cor-mat}
129+\end{figure}
130+
131+\subsection{Outliers}
132+
133+The remaining indicators are all affected by outliers, as one can see
134+in Figure \ref{outliers}. We are very reluctant to treat them, despite
135+the impact they may have on the PCA, because they are not supposed to
136+be measurement errors, but they stand for countries imposing an
137+unusually high number of NTMs on their imports.
138+
139+% \textcolor{red}{Any thoughts on this?}
140+
141+
142+
143+
144+
145+\begin{figure}
146+\includegraphics[width=\columnwidth]{indicators_box_plot2.pdf}
147+\caption{Boxplots of the NTM 1-digit distributions.}
148+\label{outliers}
149+\end{figure}
150+
151+
152+\section{Principal Component Analysis}
153+In this section we resort to principal component analysis (PCA) to
154+statistically determine the weights of the components of the NTM composite
155+indicator we intend to construct. In the following, unless otherwise stated, we will use the
156+terms component and factor interchangeably.
157+The methodology is taken from \cite{nicoletti} and \cite{oecd-composite}.
158+
159+First, we carry out a PCA on the centred and scaled subindicators and we
160+determine the number of factors we want to include in the analysis.
161+According to Table \ref{table-pca} the first three components satisfy
162+the following conditions (laid out in Ref. \cite{nicoletti}).
163+\begin{itemize}
164+\item The associated eigenvalue is larger than $1$.
165+\item Each component accounts for at least $10\%$ of the total
166+ variance.
167+\item Together, they account for more than $60\%$ of the total variance.
168+\end{itemize}
169+
170+
171+% latex table generated in R 3.6.1 by xtable 1.8-4 package
172+% Tue Nov 26 09:51:34 2019
173+\begin{table}[ht]
174+\centering
175+\caption{Summary statistics of PCA (without rotation).}
176+\begin{tabular}{rrr}
177+ \toprule
178+Eigenvalue & Share of total variance & Cumulative share of variance \\
179+ \midrule
180+\bf{2.53} & \bf{0.32} & \bf{0.32} \\
181+ \rowcolor[gray]{0.9}\bf{1.49} & \bf{0.19} & \bf{0.50} \\
182+ \bf{1.11} & \bf{0.14} & \bf{0.64} \\
183+ \rowcolor[gray]{0.9}0.91 & 0.11 & 0.75 \\
184+ 0.80 & 0.10 & 0.85 \\
185+ \rowcolor[gray]{0.9}0.66 & 0.08 & 0.94 \\
186+ 0.32 & 0.04 & 0.98 \\
187+ \rowcolor[gray]{0.9}0.18 & 0.02 & 1.00 \\
188+ \bottomrule
189+\end{tabular}
190+\label{table-pca}
191+\end{table}
192+
193+
194+The second step consists in performing a PCA followed by a varimax
195+rotation by limiting the number of factors to three.
196+The loadings of the rotated components are provided in Table \ref{table-varimax}.
197+
198+% latex table generated in R 3.6.1 by xtable 1.8-4 package
199+% Tue Nov 26 10:29:58 2019
200+\begin{table}[ht]
201+\centering
202+\caption{Loadings of the rotated components (varimax rotation).}
203+\begin{tabular}{lrrr}
204+ \toprule
205+Subindicator & Component 1 & Component 2 & Component 3 \\
206+ \midrule
207+A & 0.82 & 0.39 & 0.09 \\
208+ \rowcolor[gray]{0.9}B & 0.70 & 0.37 & -0.03 \\
209+ C & 0.38 & 0.38 & -0.10 \\
210+ \rowcolor[gray]{0.9}D & -0.05 & 0.88 & -0.04 \\
211+ E & 0.03 & 0.71 & 0.54 \\
212+ \rowcolor[gray]{0.9}F & 0.62 & -0.23 & 0.13 \\
213+ G & 0.08 & -0.02 & 0.95 \\
214+ \rowcolor[gray]{0.9}H & 0.63 & -0.13 & 0.03 \\
215+ \bottomrule
216+\end{tabular}
217+\label{table-varimax}
218+\end{table}
219+
220+At this point, we follow the procedure by \cite{nicoletti}. First, we
221+calculate the normalised squared factor loadings, which are reported
222+in Table \ref{squared-loadings}.
223+We then do the following
224+\begin{enumerate}
225+\item we select the subindicators with the highest factors loadings in
226+intermediate composite indicators. They are highlighted in Table
227+\ref{squared-loadings};
228+\item we then weight each composite using the proportion of the
229+ variance explained in the data set. In order to do so we calculate
230+ the sum of the unnormalised squared factor loadings (explained
231+ variance) and we divide it by the total variance accounted for by
232+ the rotated factors (sum of the highlighted eigenvalues in Table \ref{table-pca}).
233+\end{enumerate}
234+
235+Combining the results in Tables
236+\ref{squared-loadings}-\ref{squared-loadings2}, we get the
237+weights for the subindicators illustrated in Table
238+\ref{final-weights}.
239+Finally, although this has no impact on the ranking of the countries,
240+we normalise to one the sum of the weights of the indicators, as shown
241+in Table \ref{final-weights-norm}.
242+
243+
244+
245+
246+
247+% latex table generated in R 3.6.1 by xtable 1.8-4 package
248+% Tue Nov 26 10:49:08 2019
249+\begin{table}[ht]
250+\centering
251+\caption{Normalised squared loadings of the rotated components in
252+ Table \ref{table-varimax}.}
253+\begin{tabular}{lrrr}
254+ \toprule
255+Subindicator & Component 1 & Component 2 & Component 3 \\
256+ \midrule
257+A & \bf{0.32} & 0.08 & 0.01 \\
258+ \rowcolor[gray]{0.9}B & \bf{0.23} & 0.08 & 0.00 \\
259+ C & 0.07 & \bf{0.08} & 0.01 \\
260+ \rowcolor[gray]{0.9}D & 0.00 & \bf{0.43} & 0.00 \\
261+ E & 0.00 & \bf{0.29} & 0.24 \\
262+ \rowcolor[gray]{0.9}F & \bf{0.18} & 0.03 & 0.01 \\
263+ G & 0.00 & 0.00 & \bf{0.73} \\
264+ \rowcolor[gray]{0.9}H & \bf{0.19} & 0.01 & 0.00 \\
265+ \bottomrule
266+\end{tabular}
267+\label{squared-loadings}
268+\end{table}
269+
270+
271+
272+% latex table generated in R 3.6.1 by xtable 1.8-4 package
273+% Tue Nov 26 12:47:14 2019
274+\begin{table}[ht]
275+\centering
276+\caption{Squared loadings of the rotated components in
277+ Table \ref{table-varimax}.}
278+\begin{tabular}{lrrr}
279+ \toprule
280+Subindicator & Component 1 & Component 2 & Component 3 \\
281+ \midrule
282+A & 0.68 & 0.15 & 0.01 \\
283+ \rowcolor[gray]{0.9}B & 0.49 & 0.14 & 0.00 \\
284+ C & 0.15 & 0.14 & 0.01 \\
285+ \rowcolor[gray]{0.9}D & 0.00 & 0.77 & 0.00 \\
286+ E & 0.00 & 0.51 & 0.30 \\
287+ \rowcolor[gray]{0.9}F & 0.39 & 0.05 & 0.02 \\
288+ G & 0.01 & 0.00 & 0.90 \\
289+ \rowcolor[gray]{0.9}H & 0.40 & 0.02 & 0.00 \\
290+ \midrule
291+ Explained Variance & 2.11 & 1.78 & 1.23 \\
292+ Explained/Total Variance & \bf{0.41} & \bf{0.35} & \bf{0.24} \\
293+ \bottomrule
294+\end{tabular}
295+\label{squared-loadings2}
296+\end{table}
297+
298+
299+% latex table generated in R 3.6.1 by xtable 1.8-4 package
300+% Tue Nov 26 14:41:44 2019
301+\begin{table}[ht]
302+\centering
303+\caption{Final weights for the subindicators.}
304+\begin{tabular}{lr}
305+ \toprule
306+Subindicator & Weight \\
307+ \midrule
308+A & 0.13 \\
309+ \rowcolor[gray]{0.9}B & 0.10 \\
310+ C & 0.03 \\
311+ \rowcolor[gray]{0.9}D & 0.15 \\
312+ E & 0.10 \\
313+ \rowcolor[gray]{0.9}F & 0.08 \\
314+ G & 0.17 \\
315+ \rowcolor[gray]{0.9}H & 0.08 \\
316+ \bottomrule
317+\end{tabular}
318+\label{final-weights}
319+\end{table}
320+
321+
322+
323+% latex table generated in R 3.6.2 by xtable 1.8-4 package
324+% Thu Feb 6 11:57:53 2020
325+\begin{table}[ht]
326+\centering
327+\caption{Final weights for the subindicators after normalisation.}
328+\begin{tabular}{lr}
329+ \toprule
330+Subindicator & Weight \\
331+ \midrule
332+A & 0.16 \\
333+ \rowcolor[gray]{0.9}B & 0.12 \\
334+ C & 0.03 \\
335+ \rowcolor[gray]{0.9}D & 0.18 \\
336+ E & 0.12 \\
337+ \rowcolor[gray]{0.9}F & 0.09 \\
338+ G & 0.21 \\
339+ \rowcolor[gray]{0.9}H & 0.09 \\
340+ \bottomrule
341+\end{tabular}
342+\label{final-weights-norm}
343+\end{table}
344+
345+
346+
347+
348+% \section{Final Questions}
349+% Any feedback on the methodology (misunderstandings on our side;
350+% possible refinements, improved choice of the number of components, etc...) is more than welcome.
351+% If needed, we can provide more information (including the input data
352+% and the R code for the PCA calculations).
353+
354+% We have a question about Table 6.2 in \cite{oecd-composite}, page
355+% 57: what is the normalisation of ``Expl./Tot'' (last line in the table)?
356+% We thought it should be normalised to $1$, like the ``Weight of
357+% factors in summary indicator'' in Tables 8,9 and 11 of
358+% \cite{nicoletti}.
359+
360+
361+\clearpage
362+
363+\bibliography{mybibfile}
364+\bibliographystyle{apalike}
365+
366+
367+\end{document}
\ No newline at end of file