
Chained Enforceable Re-authentication Barrier Ensures Really Unbreakable Security

Toshiharu Harada Takaaki Matsumoto

NTT DATA CORPORATION

1. Introduction

The DAC (Discretionary Access Control), which

Microsoft Windows, Linux and many other operating

systems have built-in, holds vulnerabilities and there are

risks caused by DAC's vulnerabilities. To solve DAC's

problem, MAC (Mandatory Access Control) was invented

[1]. At first, the MAC was implemented for the systems

that have special requirements including military use. But

LSM [2] (a framework to provide MAC to Linux) and

SELinux [3] (one of implementations that provides MAC

using LSM) were introduced into Linux (the open sourced

operating system) on November 2004, and the MAC

became closer to us at a stretch. While the environment to

build secure Linux system has been greatly improved, the

purpose and meaning of security enhancement by

introducing the security enhanced OS are not very

accurately known. According to a paper [4] by SELinux

development project, the following two are the merits of

introducing SELinux.

・ Handling of the threats posed by "Tampering" or

"Avoidance of security mechanisms at application

level".

・ Minimizing the damage caused by malicious or

vulnerable applications.

These are the exactly merits gained by security

enhancement at OS level. These are never excessive

requirements and all computer systems should provide

essentially. But you need to be careful that the

introduction of MAC itself doesn't promise protection

against all kinds of damage. On the systems that have

MAC support, if MAC's policies are defined appropriately,

the system won't get damaged indefinitely by invoking

shell with administrator's privilege even if some process is

hijacked due to vulnerability such as buffer overflow. But

since it is possible to log into the system through proper

procedure (for example, login authentication using valid

username and correct password), there is a threat that a

cracker logs into the system in case the password's secrecy

is broken. It is possible to define strict policies for routine

tasks and functions. But it is difficult to define strict

policies for administration task that is done by

administrator logged into the system. In SELinux, it is

possible to define policies that deactivate root privilege [5],

but there remains an interface to modify and reflect

policies, and the interface is protected by conventional

password authentication after all. This paper describes

how to prevent crackers from logging in through proper

procedure using MAC, using TOMOYO Linux (one of MAC

implementations which the authors of this paper

(hereafter, we) have originally developed).

2. Vulnerabilities of Login Authentication

The general method of login authentication used in

many computer systems is password authentication that

uses password supplied by user. Typically, login

authentication can be performed only once. Therefore,

login authentication always has threats such as password

cracking using dictionary attack or avoidance of login

authentication by attacking authentication program's

vulnerability (for example, buffer overflow).

Conventional login authentication has the following

problems.

・ Login authentication can be performed only once.

・ Passwords are used in many systems.

・ Have to worry password's secrecy because you can't

know the moment your password being cracked.

・ Have to worry vulnerability of authentication

programs.

These problems are described below.

2.1. Login authentication can be performed only once.

Normally, the login authentication is performed only

once before a user logs into the system, regardless of the

user is system administrator or not. Some security aware

applications (for example, database software) enforce

application specific authentications, but users can access

to almost all resources if they passed the login

authentication. There are some attempts to notify the

possibility of illegal logins (for example, displaying last

login time) after the user passed the login authentication.

But even if the user can notice illegal logins, it's useless

because the system is already damaged and the user can't

respond. Moreover, the user even can't identify the

damaged range of the system after the fact.

2.2. Passwords are used in many systems.

The only basis of password authentication is the

correctness of the ordering of password string. Therefore,

it is problematic that users have to keep their password's

secrecy. Possible risks are, cracked by dictionary attack,

stolen by eavesdropping or social engineering. It is

possible to reduce these risks by introducing special

systems (for example, one-time passwords, biometrics),

but they are costly because administrators have to

introduce special devices or special software.

2.3. Have to worry password's secrecy.

It is possible to detect that user's passwords are

attacked (for example, using dictionary attack) by

monitoring authentication failure log. But you can't

Abstract: Mandatory Access Control (MAC) is a powerful guard against non-authorized access, but is vulnerable to

hackers logged in through proper procedure. This paper describes how to guard such case using MAC.

Keywords: Mandatory Access Control, MAC, Login Authentication, Anti-Spoofing

answer to the following questions.

"How many days does the cracker need to find my

correct password?" (In other words, "When is the last day I

can use my password safely?")

"Changing my password ALWAYS makes things safer,

for I found an attempt to crack my password?" (In other

words, "Changing my password ALWAYS makes the

cracker need more days to crack my password?")

There are discussions about "Password authentication

and pass phrase authentication, which one is stronger?"[6],

but neither password authentication nor pass phrase

authentication can answer to these questions after all.

Operations that forces users to change their passwords so

frequently makes their passwords easier and, as a result,

will lead to insecure system.

2.4. Have to worry vulnerability of authentication

programs.

Even if you introduced recently spreading special

devices (such as fingerprint authentication, iris

verification), the authentication might be avoided if there

is vulnerability (such as buffer overflow) in the program

that handles these devices.

3. Security Enhanced OS

3.1. The concept of security enhancement at OS level.

 The MAC is capable to forbid execution of unnecessary

functions by controlling OS's behavior, although OSes are

originally made available for generic purpose. The MAC's

access control is applied to all processes and all users

without exception, and can precisely restrict resources

such as files and directories that processes and users can

access. In normal Linux, DAC's access control is not

applied to the system administrator (i.e. root). In general,

an OS that supports MAC is called "Security Enhanced

OS"[3].

 The reason why security enhanced OS is helpful is

described below with a simple example. Processes that

provide services over network (such as ftp server, samba)

are always configured to accept request from network. The

crackers can hijack these processes and invoke shell with

administrator's privilege if vulnerability exists in these

programs. OSes that don't support MAC cannot prevent

the invocation of shells or invocation of malicious

commands from the invoked shells. But if MAC is

supported and appropriate policies are defined by

administrators, the OS can prevent the invocation of

shells that are essentially unnecessary for these processes

if the processes are hijacked.

3.2. Reinforcement of login authentication using security

enhanced OSes

In general, the security enhanced OSes are introduced

to reduce the damage of hijacking and to ensure the data

integrity. But the login authentication can produce

unexpected pitfalls, as described above. However, it is

possible to solve this problem using MAC that security

enhanced OSes support. The basic idea is "Multiplex the

Login Authentications". The login authentication

multiplexing itself is possible to OSes that don't support

MAC, but has significant points on OSes that support

MAC, for OSes that support MAC can enforce the

multiplexed login authentications.

4. Login Authentication Multiplexing

4.1. Image of multiplexing

The Fig. 1 shows the conventional login authentication,

and the Fig. 2 shows the multiplexed login authentications.

The purpose of login authentication is to prevent crackers

from reaching to the castle.

Fig. 1 creates a hole and places a guard. The guard

means a program that performs authentication. There is

only one wall. Without MAC, the wall could be broken and

the cracker can reach to the castle without passing the

guard (i.e. the cracker can log into the system without

passing login authentication).

By introducing MAC, the wall becomes unbreakable (i.e.

the cracker can't log into the system without passing login

authentication). But since there is only one guard, the

cracker can reach to the castle if the cracker could pass

the login authentication through proper procedure (using

valid username and correct password).

Login

Authentication

(Built-in)

Login

Authentication

(Built-in)

Fig. 1 Conventional Login Authentication

Fig.2 inserts two walls between the original wall and

the castle, each wall has one hole and one guard. The

cracker has to pass all guards to reach to the castle.

Login

Authentication

(Built-in)

First Extra

Authentication

Second Extra

Authentication

Login

Authentication

(Built-in)

First Extra

Authentication

Second Extra

Authentication

Fig. 2 Multiplexed Login Authentications

4.2. Example programs for extra authentication

You need to place newly developed authentication

programs for First and Second Extra Authentications

shown in Fig. 2. Some examples using shell scripts are

shown below. But you should develop your programs using

non-scripting (for example C) language for production

environment, for the content of shell script program is

exposed if the environment variable "SHELLOPTS" is set

with "verbose" flag.

(1) Simple password authentication

 This program (Fig. 3) requires "SAKURA" as

password. The authentication fails if the user entered

wrong password for 3 times.

#! /bin/sh

for i in 1 2 3

do

 read -r -s -p 'Password: ' passwd

 echo

 ["$passwd" = "SAKURA"] && exec $SHELL

done

echo 'Incorrect password.'

Fig. 3 Simple password authentication

(2) Non-password authentication

This program (Fig. 4) authenticates the user by the

existence of the file /data/rootauth . This program prompts

users to enter password, but that is a dummy. The

authentication always fails whatever passwords the

cracker guesses unless the file exists. The file needs to be

created (using touch commands, for example) prior to the

execution of this program. (Since a terminal is supplied to

the user after the conventional login authentication, the

user can execute necessary command if granted by the

policy.)

#! /bin/sh

for i in 1 2 3

do

 read -r -s -p 'Password: ' passwd

 echo

 [-f /data/rootauth] && exec $SHELL

done

echo 'Incorrect password.'

Fig. 4 Non-password authentication

(3) Never succeeding authentication

This program (Fig. 5) prompts users to enter passwords,

but never succeed. This program is not for legal users, but

for crackers who don't know how to pass this

authentication. This program will confuse crackers.

#! /bin/sh

while :

do

 read -r -s -p 'Password: ' passwd

 echo

done

Fig. 5 Never succeeding authentication

Typically, the system looses protections against crackers

when the cracker successfully passed conventional login

authentication. But you can counter this threat by

introducing extra authentications with various

authentication rules and enforce them using MAC.

5. Advantages of Login Authentication Multiplexing

The following merits are derived by login authentication

multiplexing.

5.1. You can enforce login authentication for arbitrary

times.

You can enforce login authentication for arbitrary times

depending on the resource's importance. For example, you

can allow access to trivial resources after passing only

conventional login authentication and allow access to

critical resources after passing three extra login

authentications.

5.2. You needn't to worry about vulnerability of

authentication programs.

The vulnerability of authentication program is critical if

the authentication can be performed only once. But since

you can enforce multiple different authentications, it

won't matter so much if one of the authentication

programs has vulnerability.

5.3. You can use everything for authentication

Regarding conventional login authentication, the

system can't know the process of supplying passwords and

the authentication program authorizes the user using the

supplied passwords. But after the conventional login

authentication, a terminal (or a console) environment is

provided to the user. This means that the authentication

programs can know the user's behavior in great detail. You

can use not only password strings but also all elements for

authentication, for the authentication programs can know

(for example) the speed of key typing or the user's

behavior after the conventional login authentication and

can use these elements for authentication.

Another example, you can use the existence of specific

files (Fig. 4) or the contents of specific file as a password.

You can use flags that always fail the authentication

request like /etc/nologin , last modified time of specific file

to test "Whether this authentication is started within 1

minute from the previous authentication".

The programs that perform authentication even needn't

to be recognized at a glance that the programs are used for

authentication. For example, a screen like card games

appear when the program is executed and actually users

can play with, but the authentication succeeds only when

the specific key is pressed at the specific timing (like a

kind of trapdoor programs). The requirement is that

authentication programs are programs that only the legal

users know the procedure how to pass that authentication.

You can create authentication programs in the same

manner of developing normal application programs. Your

idea makes strong authentication and the possible

combinations of elements are infinite.

5.4. No damage unless all authentications are penetrated.

You can define policies that forbid access to critical

resources unless the user passes all login authentications.

Specifically define policies that allow users who passed

one login authentication do minimum operations that are

needed to pass the next login authentication. You may

append policies that allow users to execute dummy

authentication program (like Fig. 5) to make penetration

more difficult.

5.5. You can advise to legal users.

You can know which authentication program was

penetrated, and you can replace only the program that

was penetrated.

You can notify to users by sending mail like "The login

authentication of host XXXXX was penetrated, but the

cracker was eliminated by extra authentication

mechanism. To prevent another penetration, I changed

your password to XXXXXXX."

6. Practical Issues and Solutions

6.1. Login shell

Login shell is a program that is executed when a user

logs into the system, and is specified in the /etc/passwd file.

In Linux, bash, ksh, tcsh, zsh etc. are available.

Shell is provided to execute external programs, but most

shells have their internal (built-in) commands.

An example of shell's internal commands is "kill", which

sends signals to processes. A cracker who passed the login

authentication can forcefully terminate arbitrary process

if appropriate privilege is given.

Of course, it is possible to restrict signal transmission

using MAC's policy. But that is not enough.

A cracker can give high load using infinite loop using

shell's internal command. For example, if the cracker

gives internal command "while : ; do echo ; done" to bash,

the system's response become slower. It is impossible to

prevent this CPU consumption attack by infinite loop

using MAC's policy.

Therefore, to apply this login authentication

multiplexing method, it is important that login shells

don't have unnecessary internal commands. The role of

login shells is to provide interface to execute the next

extra authentication. Less functional shells are better and

suitable. Of course, you can use normal shells to start

actual operations after passing all login authentications.

6.2. "scp" and "sftp"

There are two commands that are frequently used for

server maintenance purpose, "scp" and "sftp". But it is

impossible to apply this login authentication multiplexing

method for these programs. The reason and solutions are

described below.

A shell has two operation modes, one is "interactive

mode" that prompts and waits for user's input, the other is

"batch mode" that are invoked with "-c command list"

command line parameter and process the given command

list and then terminates. The method this paper describes

invokes login shells in "interactive mode" and restricts

user's behavior so that only operations that are necessary

to pass the next authentication are allowed using MAC's

policy; to prevent subversive acts unless the cracker

succeeds all login authentications. Therefore, programs

that invokes login shell in "batch mode" ("scp" connects to

remote host using "ssh" and invokes remote host's login

shell with "-c scp arguments" options. "sftp" connects to

remote host using "ssh" and invokes remote host's login

shell with "-c /usr/libexec/openssh/sftp-server" options.)

can't recognize the extra login authentications; i.e. you

can't use login authentication multiplexing for "scp" and

"sftp". This means that resources that are accessible

become vulnerable if the cracker passes ssh's login

authentication.

The solution is that restrict resources that are

accessible to such programs. Specifically, define policy

that limits reading/writing to specific temporal directory,

and move data between the specific temporal directory and

the other directories from shells that are invoked after all

extra authentication are succeeded.

7. Implementation using TOMOYO Linux

7.1. About TOMOYO Linux

TOMOYO Linux is one of MAC implementations that we

have developed based on vanilla Linux kernels, and has

"accept mode" that helps administrators defining MAC

policies. Please refer to document [7] for abstract, and

document [8] for implementation.

TOMOYO Linux defines DOMAIN (the unitary of

granting ACLs) based on the process's invocation history,

and lists ACLs that are allowed to each DOMAIN. The

ACL consists of the access mode (read/write/execute) and

the pathnames. For example, define the following line to

allow /bin/bash which are invoked by /usr/sbin/sshd (i.e. a

user logged into the system using ssh) to read /etc/passwd

and execute /usr/bin/scp .

<kernel> /usr/sbin/sshd /bin/bash

4 /etc/passwd

1 /usr/bin/scp

The integer before pathnames corresponds to UNIX's

permission. For example, "4" is "r--", "1" is "--x", "6" is

"rw-", and "7" is "rwx". The name of DOMAIN starts with

<kernel> , and the program's pathname is concatenated to

the name of DOMAIN where the program is invoked. For

example, the name of DOMAIN for /bin/tcsh that is

invoked by /bin/bash that is invoked by /usr/sbin/sshd (i.e.

a user logged into the system using ssh and invoked

/bin/tcsh from the login shell) is represented as follows.

<kernel> /usr/sbin/sshd /bin/bash /bin/tcsh

The granularity of TOMOYO Linux's access mode is not

high as SELinux. But since you can define policies using

pathnames, it is easy to understand for administrators

who have standard administration skill. And since

DOMAIN is divided by invocation of a program and the

ACLs are given for 1-file-at-a-time, you can specify more

precisely than SELinux.

7.2. Actual example policy

This section describes an actual example policy of login

authentication multiplexing shown in Fig. 2. To help

understanding, miscellaneous files like library files are

omitted. The scenario for this policy is the following.

・ Login using ssh and invoke (our custom made shell)

/bin/falsh as the login shell. /bin/falsh has no built-in

commands like "kill" or "while" to prevent attacks (for

example, killing processes, infinite loop) using login

shells.

・ Invoke (our custom made authentication program)

/bin/honey (which corresponds to First Extra

Authentication in Fig. 2). /bin/honey prompts for

password input, but this program checks not only the

password string but also the time interval each

letters are typed. The authentication fails if either

password string or the time intervals (preset in this

program) don't match.

・ Invoke (our custom made authentication program)

/bin/candy (which corresponds to Second Extra

Authentication in Fig. 2). /bin/candy prompts for

password input, but this program checks not only the

password string but also the elapsed time from the

invocation of the parent process. The authentication

fails if either password string doesn't match or the

elapsed time is longer than 10 seconds. (It is difficult

to start /bin/candy after the invocation of /bin/honey

within 10 seconds, for /bin/honey needs a several

seconds. Therefore, /bin/falsh is inserted between

/bin/honey and /bin/candy to reset the invocation time

of the parent process.)

・ Since "scp" and "sftp" need to be executed from login

shell, the policy allows executing these programs from

login shell, but these programs can access to only

/data/scp.tmp directory.

<kernel> /usr/sbin/sshd /bin/falsh

1 /bin/honey

1 /usr/bin/scp

1 /usr/libexec/openssh/sftp-server

<kernel> /usr/sbin/sshd /bin/falsh /usr/bin/scp

6 /data/scp.tmp/¥*

<kernel> /usr/sbin/sshd /bin/falsh

/usr/libexec/openssh/sftp-server

6 /data/scp.tmp/¥*

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey

1 /bin/falsh

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh

1 /bin/falsh

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh

/bin/falsh

1 /bin/candy

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh

/bin/falsh /bin/candy

1 /bin/falsh

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh

/bin/falsh /bin/candy /bin/falsh

1 /bin/bash

<kernel> /usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh

/bin/falsh /bin/candy /bin/falsh /bin/bash

In addition to this, register the DOMAIN "<kernel>

/usr/sbin/sshd /bin/falsh /bin/honey /bin/falsh /bin/falsh

/bin/candy /bin/falsh /bin/bash" as trusted, and move data

between /data/scp.tmp and other directories from this

trusted DOMAIN.

7.3. Actual operation

This section describes the procedure for users. Fig. 6 is a

screenshot that a user is connecting to a Linux server

using ssh. In the screenshot, the user enters password

strings to log in, as conventional.

Fig. 6 Conventional login authentication

After the user passed ssh's login authentication, invoke

"/bin/honey /bin/falsh /bin/candy" in this order (as defined

in the policy) and precede the authentication. Fig. 7

contains authentication failures intently to show that the

extra login authentications aren't simple password

authentications. Also, the passwords supplied are visible,

for this is a demonstration.

In the first attempt of /bin/honey , the user entered the

correct password, but the authentication failed since the

typing interval was inappropriate. In the second attempt

of /bin/honey , the user entered the correct password with

appropriate typing interval, and the authentication

succeeded.

In the first attempt of /bin/candy , the authentication

failed due to incorrect password. In the second attempt of

/bin/candy , the user entered the correct password, but the

authentication failed since /bin/candy has to be invoked

within 10 seconds after the shell (/bin/falsh) starts. In the

third attempt of /bin/candy , the user entered the correct

password, and the authentication succeeded since

/bin/candy is invoked within 10 seconds after /bin/falsh

starts.

Fig. 7 Extra login authentications

After the user passed /bin/candy (i.e. the user has

reached to the castle in Fig. 2), invoke /bin/bash and start

normal operations.

8. Discussion

8.1. Comparison with PAM

It is possible to perform multiple authentication

methods using PAM (Pluggable Authentication Modules)

to reduce the risks of illegal login. But if PAM itself has

vulnerability, the login shell could be started before

performing all authentication modules specified as

"requisite".

Also, there are typically only two input fields (username

and password) like Fig. 6, it is impossible to use multiple

passwords using PAM provided by the system. Therefore,

people combine with other methods that use information

other than password; for example, hours checking

(pam_time.so) and the name of terminal device

(pam_securetty.so).

If you WANT to use multiple passwords, you have to

stuff all passwords into one input field, splitting by

column number like Fig. 8. But the way of splitting

password field (the way of interpretation) changes

whenever new elements are stuffed into password field.

This means you need to negotiate with all modules that

share password field.

Fig. 8 Stuffing all passwords into one field

On the contrary, the way of multiplexing needn't to

change the password field when the authentication

method changes, for passwords are supplied on each step

like Fig. 6 and Fig. 7. This means you needn't to change

existent protocols and PAM configurations.

8.2. Elements available for authentication

Regarding conventional login authentication, the

system can't know the process of supplying passwords and

the authentication program authorizes the user using the

supplied passwords. But by introducing login

authentication multiplexing, the authentication programs

can know (for example) the speed of key typing or the

user's behavior after the conventional login authentication.

This allows you to choose your favorite elements from

infinite number of elements to create customized login

authentication.

8.3. Burden increment on users

It is acceptable to provide multiple information for

authentication on the systems that worth protecting from

penetration by providing extra information other than

password for authentication.

Our method is just supplying one information on each

authentication instead of supplying all information at

once. In the view of users, only the timing of supplying

information is changed. There is no limitation for extra

authentication program, so you can choose one that the

users feel minimum burden.

8.4. Price for paying for login authentication reinforcement

Our method doesn't cause overall damage if there is

vulnerability in one of the authentication programs. You

can improve security for login authentication dramatically

with just tens of lines code in C language.

8.5. Security Stadium 2004

We attended at Security Stadium 2004 held by JNSA on

the defense side. We announced root's password so that

the offence side can login via ssh (without cracking sshd).

We received attacks by security experts, and turned out

that our method is very effective. Please refer to document

[9] for details.

8.6. Applying to OSes that doesn't support MAC

It is possible to perform multiplexed login

authentications for OSes that don't support MAC. But

since the behavior of authentication programs can't be

restricted from outside using MAC's policy, each

authentication program has to restrict its behavior, and

developers have to be very careful not to create security

loopholes. If MAC is supported, the behavior of

authentication programs are restricted from outside using

MAC's policy, and developers can easily develop

authentication programs without worrying security

loopholes. Therefore, our method has significant points on

OSes that support MAC.

9. Conclusion
The security enhanced OSes are invented to protect

from unauthorized access and leakage of information, and

are getting to spread. It is possible to reduce the risk of

hijacking due to vulnerability such as buffer overflow and

improve system security by defining appropriate policy.

But how well access to system resources is controlled, the

dependence on the password login authentication can

produce unexpected pitfalls. The method of login

authentication multiplexing described in this paper is

easy to implement and doesn't require one-time passwords

or costly biometrics technology.

Acknowledgment: We were supported from the

technological study to implementation and evaluation on

TOMOYO Linux by Tetsuo Handa, NTT DATA

CUSTOMER SERVICE CORPORATION. We would like to

thank Mr. Handa.

Bibliography

[1] "A research on information systems for e-Government

based on OSes with well-considered security" (Written in

Japanese)

http://www.bits.go.jp/inquiry/pdf/secure_os_2004.pdf

[2] Linux Security Modules

http://lsm.immunix.org/

[3] National Security Agency, Security-Enhanced Linux

http://www.nsa.gov/selinux/

[4] “Meeting Critical Security Objectives with

Security-Enhanced Linux”

http://www.nsa.gov/selinux/papers/ottawa01-abs.cfm

[5] SELinux Play Machines

http://www.coker.com.au/selinux/play.html

[6] Pass Phrases vs. Passwords

http://www.microsoft.com/technet/community/columns/s

ecmgmt/sm1004.mspx

[7] Toshiharu HARADA, Takashi HORIE and Kazuo

TANAKA, "Towards a manageable Linux security." Linux

Conference 2005

http://sourceforge.jp/projects/tomoyo/document/lc2005-e

n.pdf

[8] Toshiharu HARADA, Takashi HORIE and Kazuo

TANAKA, "Task Oriented Management Obviates Your

Onus on Linux." Linux Conference 2004

http://sourceforge.jp/projects/tomoyo/document/lc2004-e

n.pdf

[9] Security Stadium 2004 (Written in Japanese)

http://www.jnsa.org/active/press/vol12pdf/4_report4.pdf

Notes

This is a translation of the original paper, which was

written in Japanese and published in Workshop on

Informatics 2005 held in Japan. You can obtain the

original paper from the following URL.

http://sourceforge.jp/projects/tomoyo/document/winf200

5.pdf

TOMOYO Linux was released on November, 11, 2005.

You can get more information at the following URLs.

http://tomoyo.sourceforge.jp/

http://sourceforge.jp/projects/tomoyo/

